

The standard 4 kinematic equations.

Use the 4 equations (models) above to answer the following questions. (Note: Remember to use negative signs, where appropriate.)

1. A bicyclist is going $6.2 \mathrm{~m} / \mathrm{s}$ eastward. He accelerates eastward at a constant $0.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 5.0 seconds. Find the cyclist's (a) final velocity and (b) the displacement.
2. A car is driving northward at $14.1 \mathrm{~m} / \mathrm{s}$ and accelerates (at a constant rate) to $25.0 \mathrm{~m} / \mathrm{s}$ northward. If the car's displacement during this acceleration is 70.4 meters northward, (a) how long was the car accelerating and (b) what was its rate of acceleration?
3. A car, starting from rest, accelerates westward at $1.35 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 3.0 seconds. What is its displacement during this time?
4. An airplane is heading northward at $260 \mathrm{~m} / \mathrm{s}$. To slow down, it accelerates southward at 40.0 $\mathrm{m} / \mathrm{s} / \mathrm{s}$. (a) How much is its velocity reduced over a displacement of 200 meters northward? (b) How long does it take to slow to $180 \mathrm{~m} / \mathrm{s}$ northward?
5. A car begins from rest and accelerates southward at a constant rate for 4.8 seconds. Over this period of time, its average velocity is $12 \mathrm{~m} / \mathrm{s}$ southward. What is the car's rate of acceleration?
6. A snowmobile is heading toward a tree at some particular speed. The operator releases the throttle and the machine begins to slow at the rate of $4.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. If the snowmobile comes to rest in 35 m , several meters in front of the tree, what was its initial speed?
7. Two cars are 400.0 meters apart and are facing one another. Imagine they're on a single-lane road. Beginning simultaneously, the red one travels forward at a constant speed of $18 \mathrm{~m} / \mathrm{s}$, and the blue one travels forward at a constant speed of $26 \mathrm{~m} / \mathrm{s}$. After 3.5 seconds, what is the distance between the cars?
8. An airplane increases its velocity from $20 \mathrm{~m} / \mathrm{s}$ to $35 \mathrm{~m} / \mathrm{s}$ westward while undergoing a displacement of 515 meters westward. What is the airplane's acceleration during this period?
9. A bus is traveling eastward at $8.20 \mathrm{~m} / \mathrm{s}$ when it begins to accelerate at $0.55 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ eastward. How long does it take for the bus to travel 61.4 meters eastward?
10. A bus is traveling eastward at $8.20 \mathrm{~m} / \mathrm{s}$ when it begins to accelerate at $0.55 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ westward. What is its velocity upon covering an additional 30 m eastward?
